GM cars use plastics in power storage

David Vink

Published: November 19, 2012 6:00 am ET
Updated: January 3, 2013 6:30 am ET

Related to this story

Topics Materials, Sustainability, Automotive, Film & Sheet, Injection Molding, Molds/Tooling

MANNHEIM, GERMANY (Nov. 19, 12:55 p.m. ET) — The batteries in General Motors’ Opel Ampera and Chevrolet Volt electric vehicles contain more than 40 kg. of polymers.

Matthew Carroll, engineering group manager at General Motors, revealed details of the EVs’ rechargeable energy storage system (RESS) at the 2012 VDI plastics in automotive conference in Mannheim.

The RESS is made up of nine automatically assembled lithium ion 18- and 9-cell plastic battery modules, which account for 22 percent of battery system weight. These hold the battery cells in position, transfer pressure to the cells, provide heating/cooling, electric connection, cell tension sensors and integration of temperature sensors.

In each RESS, 27 kg. of polymers is used in the end frames and 135 repeater frames (made in BASF’s nylon 6/6 grade, Ultramid 1503-2F NAT, which is 33 percent glass filled and hydrolysis stabilized), the nine interconnect boards (ICBs) and the housing. Soft alignment with pins, tabs and slots are used together with brass compression limiting inserts and EPDM seals to assemble the frames into battery blocks, in preference to full snap-fit engagement.

The total amount of glass fiber reinforced nylon 6/6 used in the frames and the ICBs is 18 kg.

Yazaki North America supplies the ICB. Its manufacture involves insert molding a metal cell connector (1.4kg nylon 6 per RESS) on a vertical 300-metric ton Nissei machine. The company uses DuPont’s Zytel 7335F grade of nylon 6 for the base plate and connector housing, as well as Zytel 70G33 HS1L (35 percent glass filled nylon 6/6) for overmolding the ICB.

Mann+Hummel uses a 420-metric ton KraussMaffei electric drive injection molding machine to mold repeater and end frames in a four-cavity mold. Each cavity contains a Kistler 6157 pressure sensor to optimise control of injection pressure. Statistical analysis of injection pressures in the range 48.5-49.7 MPa over the four cavities has shown standard deviations for individual cavities of 0.38-0.40 Mpa.

M+H monitors coordinate measurement machine (CMM) values on 35 consecutive samples from each mold cavity, ensuring a maximum 0.125mm dimensional tolerance window is respected. Some parts are made on an Engel molding machine and others on a machine from a Japanese company not named in Carroll’s presentation.

Carroll said the 9.7 kg. watertight RESS housing is the heaviest part, accounting for 17 percent of battery system weight. It is molded in lightweight BD 840V vinyl ester resin based sheet molding compound (SMC) from Ashland Chemical. This contains 7 percent hadite nanoclay filler and 40 percent glass fibers that are 25mm in length.

The housing is covered in a reflective metal foil for electromagnetic shielding. The use of nanoclay filler has reduced density from 2.0 to 1.5 g/cm3 and cut 1.13kg from the part weight reduction. The coefficient of linear thermal expansion is equivalent to that of steel.

The SMC contains a styrene-based low profile additive that is acceptable so far. However, Californian AT-PZEV (Advanced Technology Partial Zero Emission Vehicle) regulations may require a switch to a styrene-free formulation in future.

Continental Structural Plastics Inc. in Huntington, Ind., supplies the silicone-sealed watertight SMC housing. The housing, which has 73 openings, is molded in an open-to-close time of 180s and an overall cycle time of 4min, allowing for cooling and flash removal. Ashland Chemical designed the mold tooling, which was made by Century Tool & Gauge in Fenton, Mich.

Another part, a 150 µm thick pouch cell, is supplied by LG Chem. Plastics account for 10 percent of its weight, with PET on the outside, polyamide coating of the gastight aluminum enclosure, a ceramic coated polyolefin SRS (safety reinforced separator) and two tie layers. There is a polyurethane foam separator between each pouch to deflect compressive forces (around 50 percent compression at 20 kPa) and their sheet metal heat exchangers are coated with a Mylar PET film layer.


Comments

GM cars use plastics in power storage

David Vink

Published: November 19, 2012 6:00 am ET
Updated: January 3, 2013 6:30 am ET

Post Your Comments


Back to story


More stories

Image

China's plastics industry making a shift

January 27, 2015 3:41 pm ET

China's plastic industry is in the midst of a “profound adjustment” from large-scale and high-speed growth to growth focused on quality,...    More

Image

Citadel opens second compounding facility in China, near Shanghai

January 27, 2015 3:22 pm ET

Citadel Plastics Inc., the American manufacturer of thermoplastic and engineered composite compounds, has opened its second facility in China,...    More

Image

Sales, profit fall at DuPont

January 27, 2015 3:13 pm ET

Materials giant DuPont Co. will use almost all of the proceeds from an upcoming spinoff — one that includes its fluoropolymer and titanium...    More

Image

A. Schulman, Citadel continue buying blitz

January 27, 2015 11:32 am ET

A. Schulman Inc. and Citadel Plastics Inc. — two deal-happy materials firms — were at it again in the second half of 2014.    More

Image

It's becoming a seller's market for plastics firms

January 27, 2015 11:37 am ET

The pace of plastics mergers and acquisitions activity slowed a bit in the second half of 2014 — but market watchers have high expectations for ...    More

Market Reports

Plastics in Automotive: Innovation & Emerging Trends

This special report newly released by PN and sponsored by The Conair Group examines current trends in the use of plastics in automotive, materials innovations and the changing landscape. It includes a review of legislative/regulatory activity impacting vehicle development and lightweighting, market opportunities & challenges for mold and toolmakers, innovative design strategies being implemented by major OEMs and suppliers, as well as a review of key indicators in Canada, Mexico, Brazil and China.

Learn more

Plastics Recycling Trends in North America

This report is a review and analysis of the North American Plastics Recycling Industry, including key trends and statistics based on 2013 performance. We examine market environment factors, regulatory issues, industry challenges, key drivers and emerging trends in post-consumer and post-industrial recycling.

Learn more

Injection Molding Market Analysis & Processor Rankings

Plastics News BUNDLED package contains our in-depth Market Analysis of the Injection Molding segment. You will gain keen insight on current trends and our economic outlook.

As a BONUS this includes PN's updated 2014 database of North American Injection Molders RANKED by sales volume. Sort, merge, mail & prospect by end market, materials processed, region, # of plants and more.

Learn more

Upcoming Plastics News Events

February 4, 2015 - February 6, 2015Plastics News Executive Forum 2015

June 2, 2015 - June 3, 2015Plastics Financial Summit - Chicago 2015

September 16, 2015 - September 18, 2015Plastics Caps & Closures - September 2015

More Events