Pursuing the dream of 3-D printing an entire car chassis

By Bill Bregar
Senior Staff Reporter

Published: June 4, 2014 1:52 pm ET
Updated: June 4, 2014 1:57 pm ET

Image By: Bill Bregar Oak Ridge National Laboratory has a small scale model of a 3-D printing system for carbon fiber.

Related to this story

Topics Automotive, Rapid Prototyping, Machinery

ATLANTA — Oak Ridge National Laboratory is pushing the bounds of 3-D printing — working with an Ohio machinery company to print a full-size car chassis from carbon-fiber reinforced plastics this fall at the International Manufacturing Technology Show.

ORNL, which runs a Carbon Fiber Technology Facility in Oak Ridge, Tenn., is working with Cincinnati Inc., a maker of laser cutting and other equipment in Harrison, Ohio, and Local Motors, a Phoenix-based company that develops low-volume specialty cars selected through collaborative design.

Local Motors is running a 3-D Printed Car Design Challenge. The winner will strongly influence the final car design that will be printed at IMTS, and win a $5,000 prize and a trip to the trade show.

Cincinnati Inc. is building a large machine to do the printing, by converting the gantry on one of its laser cutting machines into a 3-D printer, according to Vlastimil Kunc, of the research development staff for deposition science and technology at Oak Ridge’s Materials Science and Technology Division. Cincinnati and ORNL signed a partnership agreement in March to develop the super-sized additive manufacturing equipment.

The car chassis machine will include printing, high-speed cutting and pellet feeding. Cincinnati, which makes metal fabrication equipment and powdered metal compacting presses, have dubbed the effort “Big Area Additive Manufacturing” — or BAAM.

Image By: Cincinnati Inc. Cincinnati Inc.'s Big Area Additive Manufacturing machine will be used to 3-D print an entire car chassis later this year.

Kunc talked about 3-D printing of carbon fiber composites at ORNL’s display at the JEC Americas show in Atlanta, May 13-15. Two small 3-D printers ran in the booth, where Oak Ridge fed lengths of carbon fiber directly into one of the machines, showing fused deposition modeling of small, finished reinforced ABS parts.

The demonstration at IMTS, in Chicago’s McCormick Place Sept. 8-13, will be much larger. That machine will print one-piece car chassis using pellets of carbon fiber using fused deposition modeling. Kunc said. The exact resin has not been picked yet, he said.

Kunc said pellets are well suited for making large commercial parts using 3-D printing, better than lengths of fibers. “You don’t have to pay big money for spools. You can take pellets just like for injection molding or extrusion,” he said.

Local Motors wants to make a car from 100 percent carbon-fiber reinforced material. Carbon-fiber reinforced chassis have been used on race cars, made from forming composites in traditional molding processes. 3-D printing is a hot topic — and making a chassis directly from additive manufacturing would be an attention-grabbing feat, especially at a major trade show.

Proof of interest in 3-D printing came at JEC Americas, as Kunc and John Lindahl, a research assistant, talked to a steady stream of people at the Oak Ridge National Laboratory’s small display.

As Lindahl fed the carbon fiber into the little printer, it built up demonstration parts — including a small-scale model of one of the car chassis.

“I believe this may be the first time someone is demonstrating 3-D printing with carbon-fiber reinforced polymer, using fused deposition modeling, at a conference,” Kunc said in Atlanta. “We have a small printer that we have modified to be able to print carbon reinforced polymer, so right now we are printing with 13 percent fiber reinforced ABS.”

He said ORNL is experimenting with filaments that have up to 40 percent carbon fiber.

Fused deposition modeling builds up parts layer by layer using thermoplastics. The process is not new, but Kunc said use of carbon fiber for a part is a breakthrough.

“What we’re showing now is that you can convert discontinuous carbon fiber onto the filament, and use fused deposition modeling to produce.”

ORNL wants to make the process more robust, to do direct manufacturing.

“We are trying to move fused deposition modeling from a prototyping technique, to a manufacturing technique that could actually be used to make product. So we are trying to improve the properties of the final part,” Kunc said. “The introduction of the carbon fiber allows us to have five to seven times the stiffness, and up to three times the strength, compared to the unreinforced plastics in FDM.”


Comments

Pursuing the dream of 3-D printing an entire car chassis

By Bill Bregar
Senior Staff Reporter

Published: June 4, 2014 1:52 pm ET
Updated: June 4, 2014 1:57 pm ET

Post Your Comments


Back to story


More stories

Image

New contract for JCI workers heads off potential strike in Ontario

August 25, 2014 3:17 pm ET

About 300 unionized workers at a Johnson Controls Inc. interiors plant in Ontario ratified a new three-year contract, heading off a potential strike...    More

Image

Haitian to start assembly of injection presses in India

August 25, 2014 2:59 pm ET

Chinese press maker Haitian International Holdings Ltd. plans to expand its operation in India.    More

Image

A123 Systems re-energizes its future

August 25, 2014 10:40 am ET

Battery maker A123 Systems LLC has new leadership and a new strategy expected to help the company generate just above a net zero cash flow on revenue ...    More

Image

Reiloy Westland to build new headquarters

August 22, 2014 12:53 pm ET

Reiloy Westland Corp. will build a 45,000-square-foot headquarters factory, as the Kansas maker of screws and barrels expands under the ownership of...    More

Image

VDMA clarifies Tokyo statement about China

August 21, 2014 2:57 pm ET

Some remarks that VDMA President Reinhold Festge made at a recent press conference in Tokyo turned into sensational headlines in China.    More

Market Reports

Thermoformed Packaging 2014 Market Review & Outlook North America

This in-depth report analyzes economic and market trends, legislative/regulatory activity impacting supply and demand, business opportunities and threats, materials pricing, manufacturing technology, as well as growth strategies being implemented by thermoformed packaging companies.

Learn more

Pipe, Profile & Tubing Extrusion in North America 2014

U.S. demand for extruded plastics is expected to grow by 3 percent in 2014, with PVC remaining the largest segment.

Plastic pipe will post the strongest gains through 2018, continuing to take market share from competing materials in a range of markets.

Our latest market report provides in-depth analysis of current trends and their financial impact on the pipe, profile and tubing extrusion industry in North America.

Learn more

2014 Injection Molding Industry Report

GROWTH, OPPORTUNITY IN SIGHT FOR INJECTION MOLDERS IN 2014

In the wake of the economic turbulence earlier in this decade, molders today find themselves in much better shape. Molders are gaining a competitive advantage by investing in people, equipment and seeking inroads into new markets on a global scale.

Growth in the injection molding industry is going to be driven by low financing costs and a continued move to reshore some business.

Learn more

Upcoming Plastics News Events

September 10, 2014 - September 12, 2014Plastics Caps & Closures 2014

January 14, 2015 - January 14, 2015Plastics in Automotive

February 4, 2015 - February 6, 2015Plastics News Executive Forum 2015

More Events