Successful tests of an all-composite cryogenic fuel tank for space launch vehicles hold promise for lower-cost access to space, perhaps before the decade is out.
A small composite fuel tank fabricated by Boeing with funding from the "game-changing" program of NASA's Space Technology Mission Directorate contained 2,091 gallons. of liquid hydrogen through a series of shifts in its internal pressure and three temperature cycles ranging from ambient down to minus 423F.
The June 25 test at Marshall Space Flight Center with a 2.4-meter-diameter composite fuel tank paves the way for more tests next spring. That test will subject a 5.5-metre tank to flight-like mechanical loads as well as temperature and pressure cycles.
It appears the project is achieving its goal of reducing the cost of building tanks by at least 25 percent from that of conventional aluminum-lithium tanks, while cutting the weight of tanks made from the lightweight aluminum alloy by at least 30 percent.
"This is a very difficult problem," says Mike Gazarik, associate administrator for space technology. "Composites and cryos don't work well together, and these guys have done incredible work in figuring out how to design and how to fabricate these tanks."
"It performed nominally, and nominally is a very good thing for us," said John Vickers, project manager on the composite cryogenic tank technology demonstration project at Marshall.
Next up for testing will be a 5.5-metre diameter tank already in fabrication at the Boeing Advanced Development Centre in Tukwila, Wash.
Both test tanks are built up with thin-ply composites that don't require a pressurized autoclave for curing. The out-of-autoclave fabrication helps hold the cost down, says Dan Rivera, Boeing's project manager on the tanks, while the thin-ply approach, already in use on satellite structures and other Boeing products, prevents microcracking that causes leaks.